Skip to content

Understanding Physics ,Technology and Society

  • by
understanding physics technology and society 240 1

PHYSICS, TECHNOLOGY AND SOCIETY

 The connection between physics, technology and society can be seen in many examples. The discipline of thermodynamics arose from the need to understand and improve the working of heat engines. The steam engine, as we know, is inseparable from the Industrial Revolution in England in the eighteenth century, which had great impact on the course of human civilisation. Sometimes technology gives rise to new physics; at other times physics generates new technology. An example of the latter is the wireless communication technology that followed the discovery of the basic laws of electricity and magnetism in the nineteenth century. The applications of physics are not always easy to foresee. As late as 1933, the great physicist Ernest Rutherford had dismissed the possibility of tapping energy from atoms. But only a few years later, in 1938, Hahn and Meitner discovered the phenomenon of neutron-induced fission of uranium, which would serve as the basis of nuclear power reactors and nuclear weapons. Yet another important example of physics giving rise to technology is the silicon ‘chip’ that triggered the computer revolution in the last three decades of the twentieth century.

A most significant area to which physics has and will contribute is the development of alternative energy resources. The fossil fuels of the planet are dwindling fast and there is an urgent need to discover new and affordable sources of energy. Considerable progress has already been made in this direction (for example, in conversion of solar energy, geothermal energy, etc., into electricity), but much more is still to be accomplished. The great physicists, their major contribution and the country of origin. You will appreciate the multi-cultural, international character of the scientific endeavour. some important technologies and the principles of physics they are based on. Obviously, these tables are not exhaustive. We urge you to try to add many names and items to these tables with the help of your teachers, good books and websites on science. You will find that this exercise is very educative and also great fun. And, assuredly, it will never end. The progress of science is unstoppable! Physics is the study of nature and natural phenomena. Physicists try to discover the rules that are operating in nature, on the basis of observations, experimentation and analysis. Physics deals with certain basic rules/laws governing the natural world. What is the nature of physical laws? We shall now discuss the
nature of fundamental forces and the laws thatgovern the diverse phenomena of the physicalworld.

FUNDAMENTAL FORCES IN NATURE

* We all have an intuitive notion of force. In our experience, force is needed to push, carry or throw objects, deform or break them. We also experience the impact of forces on us, like when a moving object hits us or we are in a merry-goround. Going from this intuitive notion to the proper scientific concept of force is not a trivial matter. Early thinkers like Aristotle had wrong ideas about it. The correct notion of force was arrived at by Isaac Newton in his famous laws of motion. He also gave an explicit form for the force for gravitational attraction between two bodies. We shall learn these matters in subsequent chapters. In the macroscopic world, besides the gravitational force, we encounter several kinds of forces: muscular force, contact forces between bodies, friction (which is also a contact force parallel to the surfaces in contact), the forces exerted by compressed or elongated springs and taut strings and ropes (tension), the force of buoyancy and viscous force when solids are in contact with fluids, the force due to pressure of a fluid, the force due to surface tension of a liquid, and so on. There are also forces involving charged and magnetic bodies. In the microscopic domain again, we have electric and magnetic forces, nuclear forces involving protons and neutrons, interatomic and intermolecular forces, etc. We shall get familiar with some of these forces in later parts of this course. A great insight of the twentieth century physics is that these different forces occurring in different contexts actually arise from only a small number of fundamental forces in nature. For example, the elastic spring force arises due to the net attraction/repulsion between the neighbouring atoms of the spring when the spring is elongated/compressed. This net attraction/repulsion can be traced to the (unbalanced) sum of electric forces between the charged constituents of the atoms. In principle, this means that the laws for ‘derived’ forces (such as spring force, friction) are not independent of the laws of fundamental forces in nature. The origin of these derived forces is, however, very complex. At the present stage of our understanding, we know of four fundamental forces in nature, which are described in brief here :

1. Gravitational Force:

 The gravitational force is the force of mutual attraction between any two objects by virtue of their masses. It is a universal force. Every object experiences this force due to every other object in the universe. All objects on the earth, for example, experience the force of gravity due to the earth. In particular, gravity governs the motion of the moon and artificial satellites around the earth, motion of the earth and planets around the sun, and, of course, the motion of bodies falling to the earth. It plays a key role in the large-scale phenomena of the universe, such as formation and evolution of stars, galaxies and galactic clusters.

2. Electromagnetic Force :

Electromagnetic force is the force between charged particles. In the simpler case when charges are at rest, the force is given by Coulomb’s law : attractive for unlike charges and repulsive for like charges. Charges in motion produce magnetic effects and a magnetic field gives rise to a force on a moving charge. Electric and magnetic effects are, in general, inseparable – hence the name electromagnetic force. Like the gravitational force, electromagnetic force acts over large distances and does not need any intervening medium. It is enormously strong compared to gravity. The electric force between two protons, for example, is 1036 times the gravitational force between them, for any fixed distance. Matter, as we know, consists of elementary charged constituents like electrons and protons.

 Since the electromagnetic force is so much stronger than the gravitational force, it dominates all phenomena at atomic and molecular scales. (The other two forces, as we shall see, operate only at nuclear scales.) Thus it is mainly the electromagnetic force that governs the structure of atoms and molecules, the dynamics of chemical reactions and the mechanical, thermal and other properties of materials. It underlies the macroscopic forces like ‘tension’, ‘friction’, ‘normal force’, ‘spring force’, etc. Gravity is always attractive, while electromagnetic force can be attractive or repulsive. 

Another way of putting it is that mass comes only in one variety (there is no negative mass), but charge comes in two varieties : positive and negative charge. This is what makes all the difference. Matter is mostly electrically neutral (net charge is zero). Thus, electric force is largely zero and gravitational force dominates terrestrial phenomena. Electric force manifests itself in atmosphere where the atoms are ionised and that leads to lightning If we reflect a little, the enormous strength of the electromagnetic force compared to gravity is evident in our daily life. When we hold a book in our hand, we are balancing the gravitational force on the book due to the huge mass of the earth by the ‘normal force’ provided by our hand. The latter is nothing but the net electromagnetic force between the charged constituents of our hand and the book, at the surface in contact. If electromagnetic force were not intrinsically so much stronger than gravity, the hand of the strongest man would crumble under the weight of a feather ! Indeed, to be consistent, in that circumstance, we ourselves would crumble under our own weight !

3.Strong Nuclear Force :

The strong nuclear force binds protons and neutrons in a nucleus. It is evident that without some attractive force, a nucleus will be unstable due to the electric repulsion between its protons. This attractive force cannot be gravitational since force of gravity is negligible compared to the electric force. A new basic force must, therefore, be invoked. The strong nuclear force is the strongest of all fundamental forces, about 100 times the electromagnetic force in strength. It is charge-independent and acts equally between a proton and a proton, a neutron and a neutron, and a proton and a neutron. Its range is, however, extremely small, of about nuclear dimensions (10–15m). It is responsible for the stability of nuclei. The electron, it must be noted, does not experience this force. Recent developments have, however, indicated that protons and neutrons are built out of still more elementary constituents called quarks.

4.Weak Nuclear Force :

The weak nuclear force appears only in certain nuclear processes such as the β-decay of a nucleus. In β-decay, the nucleus emits an electron and an uncharged particle called neutrino. The weak nuclear force is not as weak as the gravitational force, but much weaker than the strong nuclear and electromagnetic forces. The range of weak nuclear force is exceedingly small, of the order of 10–16 m.

Towards Unification of Forces We remarked  that unification is a basic quest in physics. Great advances in physics often amount to unification of different theories and domains. Newton unified terrestrial and celestial domains under a common law of gravitation. The experimental discoveries of Oersted and Faraday showed that electric and magnetic phenomena are in general inseparable. Maxwell unified electromagnetism and optics with the discovery that light is an electromagnetic wave. Einstein attempted to unify gravity and electromagnetism but could not succeed in this venture. But this did not deter physicists from zealously pursuing the goal of unification of forces. Recent decades have seen much progress on this front. The electromagnetic and the weak nuclear force have now been unified and are seen as aspects of a single ‘electro-weak’ force. What this unification actually means cannot be explained here. Attempts have been (and are being) made to unify the electro-weak and the strong force and even to unify the gravitational force with the rest of the fundamental forces. Many of these ideas are still speculative and inconclusive. summarises some of the milestones in the progress towards unification of forces in nature.

NATURE OF PHYSICAL LAWS Physicists explore the universe. Their investigations, based on scientific processes, range from particles that are smaller than atoms in size to stars that are very far away. In addition to finding the facts by observation and experimentation, physicists attempt to discover the laws that summarise (often as mathematical equations) these facts. In any physical phenomenon governed by different forces, several quantities may change with time. A remarkable fact is that some special physical quantities, however, remain constant in time. 

They are the conserved quantities of nature. Understanding these conservation principles is very important to describe the observed phenomena quantitatively. For motion under an external conservative force, the total mechanical energy i.e. the sum of kinetic and potential energy of a body is a constant. The familiar example is the free fall of an object under gravity. Both the kinetic energy of the object and its potential energy change continuously with time, but the sum remains fixed. If the object is released from rest, the initial potential energy is completely converted into the kinetic energy of the object just before it hits the ground. This law restricted for a conservative force should not be confused with the general law of conservation of energy of an isolated system (which is the basis of the First Law of Thermodynamics). 

The concept of energy is central to physics and the expressions for energy can be written for every physical system. When all forms of energy e.g., heat, mechanical energy, electrical energy etc., are counted, it turns out that energy is conserved. The general law of conservation of energy is true for all forces and for any kind of transformation between different forms of energy. In the falling object example, if you include the effect of air resistance during the fall and see the situation after the object hits the ground and stays there, the total mechanical energy is obviously not conserved. The general law of energy conservation, however, is still applicable. The initial potential energy of the stone gets transformed into other forms of energy : heat and sound. (Ultimately, sound after it is absorbed becomes heat.) The total energy of the system (stone plus the surroundings) remains unchanged. The law of conservation of energy is thought to be valid across all domains of nature, from the microscopic to the macroscopic. It is routinely applied in the analysis of atomic, nuclear and elementary particle processes. At the other end, all kinds of violent phenomena occur in the universe all the time. Yet the total energy of the universe (the most ideal isolated system possible !) is believed to remain unchanged. Until the advent of Einstein’s theory of relativity, the law of conservation of mass was regarded as another basic conservation law of nature, since matter was thought to be indestructible.

 It was (and still is) an important principle used, for example, in the analysis of chemical reactions. A chemical reaction is basically a rearrangement of atoms among different molecules. If the total binding energy of the reacting molecules is less than the total binding energy of the product molecules, the difference appears as heat and the reaction is exothermic. The opposite is true for energy absorbing (endothermic) reactions. However, since the atoms are merely rearranged but not destroyed, the total mass of the reactants is the same as the total mass of the products in a chemical reaction. The changes in the binding energy are too small to be measured as changes in mass. According to Einstein’s theory, mass m is equivalent to energy E given by the relation E = mc2 , where c is speed of light in vacuum. In a nuclear process mass gets converted to energy (or vice-versa). This is the energy which is released in a nuclear power generation and nuclear explosions.

Energy is a scalar quantity. But all conserved quantities are not necessarily scalars. The total linear momentum and the total angular momentum (both vectors) of an isolated system are also conserved quantities. These laws can be derived from Newton’s laws of motion in mechanics. But their validity goes beyond mechanics. They are the basic conservation laws of nature in all domains, even in those where Newton’s laws may not be valid. Besides their great simplicity and generality, the conservation laws of nature are very useful in practice too. It often happens that we cannot solve the full dynamics of a complex problem involving different particles and forces. 

The conservation laws can still provide useful results. For example, we may not know the complicated forces that act during a collision of two automobiles; yet momentum conservation law enables us to bypass the complications and predict or rule out possible outcomes of the collision. In nuclear and elementary particle phenomena also, the conservation laws are important tools of analysis. Indeed, using the conservation laws of energy and momentum for β-decay, Wolfgang Pauli (1900-1958) correctly predicted in 1931 the existence of a new particle (now called neutrino) emitted in β-decay along with the electron. Conservation laws have a deep connection with symmetries of nature that you will explore in more advanced courses in physics. For example, an important observation is that the laws of nature do not change with time! If you perform an experiment in your laboratory today and repeat the same experiment (on the same objects under identical conditions) after a year, the results are bound to be the same. It turns out that this symmetry of nature with respect to translation (i.e. displacement) in time is equivalent to the law of conservation of energy. 

Likewise, space is homogeneous and there is no (intrinsically) preferred location in the universe. To put it more clearly, the laws of nature are the same everywhere in the universe. (Caution : the phenomena may differ from place to place because of differing conditions at different locations. For example, the acceleration due to gravity at the moon is one-sixth that at the earth, but the law of gravitation is the same both on the moon and the earth.) This symmetry of the laws of nature with respect to translation in space gives rise to conservation of linear momentum. In the same way isotropy of space (no intrinsically preferred direction in space) underlies the law of conservation of angular momentum*. The conservation laws of charge and other attributes of elementary particles can also be related to certain abstract symmetries. Symmetries of space and time and other abstract symmetries play a central role in modern theories of fundamental forces in nature.

Leave a Reply

Your email address will not be published.